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Abstract

We present a reduction of the anti-self-dual Yang–Mills (ASDYM) equations to a system of partial differential equations
(PDEs) introduced recently by Nijhoff et al. (Phys. Lett. A 267 (2000) 147). An auto-Bäcklund transformation of the reduced
system is also presented. The system under consideration is related to a fourth-order nonlinear PDE of the Schwarzian type. The
symmetry group of the latter equation is calculated and similarity reductions to the Schwarzian equation and the full Painlevé
III, V and VI are presented. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A novel class of integrable nonlinear PDEs of the
Schwarzian type, i.e., invariant under projective trans-
formations of the dependent variable, was recently in-
troduced in [1]. The members of this class can be clas-
sified into three groups of two-parameter families of
equations, named in [1] the Schwarzian PDE, the mod-
ified PDE and the regular PDE, respectively. These
groups form a Miura chain, and their importance stems
from the fact that they are generating equations for
whole hierarchies of higher-order integrable systems.

In this Letter we expand on the integrability aspects
of the last group of the Nijhoff–Hone–Joshi chain of
equations, i.e., on the regular PDE (RPDE). It is well
known that a (partial) list of characteristics of inte-
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grable systems consists of Lax pairs, Bäcklund trans-
formations, multi-Hamiltonian structure, and reduc-
tions to the Painlevé type of ordinary differential equa-
tions (ODEs). More recently, one more characteristic
has emerged, namely that (most) integrable systems
result from reductions of the anti-self-dual Yang–Mills
equations (ASDYM) [2,3]. In a sense, one can now
consider the reductionto Painlevé type equations and
the reductionsfrom the ASDYM equations as estab-
lishing integrability from below and above, respec-
tively. In the following pages we establish the integra-
bility of the RPDE from above, as well as from be-
low. Moreover, we present a Lax pair and a Bäcklund
transformation, the latter of which allows for an, es-
sentially, algebraic way of producing new solutions of
the RPDE from known, simpler ones.

The reduction of the ASDYM equations which
leads to the RPDE is presented in Section 2. More
specifically, in that section we show that a two-dimen-
sional reduction, which employs a pair of commuting,
null conformal Killing vectors, leads to the system of
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PDEs (25)–(27) for a triad of complex-valued func-
tions (P,R,U). This system expresses the RPDE in
involution form, in a sense that will be clear later.

The similarity reductions of the RPDE are presented
in Section 4. More specifically, after a thorough analy-
sis of the Lie point symmetries of the RPDE, we show,
in Section 4, that the most general similarity reduc-
tions of the RPDE lead to the Schwarzian equation and
to Painlevé III, V and VI in full form.

The reduction process that gave system (25)–(27)
starting from the ASDYM equations has allowed us
to construct an auto-Bäcklund transformation of the
above system, and, a fortiori, of the RPDE. This
Bäcklund transformation, along with the correspond-
ing Bianchi commuting diagram, is presented in Sec-
tion 3.

The Letter concludes with the perspectives, where,
in the framework of a more general program of
investigation in progress, we relate the RPDE to the
famous Ernst equation of general relativity.

2. Reduction of the ASDYM equations

2.1. General considerations

Throughout this section we shall follow the notation
and conventions of [4]. LetU denote the manifoldR4

with double null coordinatesxa = (w, z, w̃, z̃) and the
metric

(1)ds2 = 2(dz dz̃− dw dw̃)

with signature++−− (the ultrahyperbolic slice). The
Yang–Mills potential onU is represented by the one-
form

Φ =Φw dw+Φz dz+Φw̃ dw̃+Φz̃ dz̃,

where the components take values in the Lie algebrag

of a Lie groupG called the gauge group. In the finite-
dimensional caseG can be taken to beGL(N,C). The
field strengthF of Φ is the two-form given by

(2)F = dΦ +Φ ∧Φ,

or, in component form,

Fab = ∂aΦb − ∂bΦa + [Φa,Φb] .

We say thatΦ andΦ ′ are related by a gauge transfor-
mation when

(3)Φ ′ = g−1Φg + g−1 dg,

whereg(xa) ∈G.
Φ is said to be anti-self-dual iffF is Hodge anti-

self-dual with respect to metric (1). Choosing an
orientation, this condition is equivalent to the ASDYM
equations

(4)∂zΦw − ∂wΦz + [Φz,Φw] = 0,

(5)∂z̃Φw̃ − ∂w̃Φz̃ + [Φz̃,Φw̃] = 0,

∂zΦz̃ − ∂z̃Φz − ∂wΦw̃ + ∂w̃Φw + [Φz,Φz̃]
(6)− [Φw,Φw̃] = 0.

These equations are the integrability conditions of
the overdetermined linear system (Lax pair)

(7)
(
∂w +Φw − ζ(∂z̃ +Φz̃)

)
Ψ = 0,

(8)
(
∂z +Φz − ζ(∂w̃ +Φw̃)

)
Ψ = 0,

for all values of the parameterζ , whereΨ (xa; ζ ) is
aG-valued function of the spacetime coordinates and
the spectral parameter.

2.2. Reduced equations and Lax pair

To perform a two-dimensional reduction one has to
first choose a two-dimensional subgroupH of the full
group of conformal transformations of the ASDYM
equations. A general class of two-dimensional reduc-
tions is considered in [4] whereH is generated by two
conformal Killing vectors (CKV)

X = a∂w + b∂z + ã∂w̃ + b̃∂z̃,

(9)Y = c∂w + d∂z + c̃∂w̃ + d̃∂z̃,

wherea, b, c, d andã, b̃, c̃, d̃ depend only onw,z and
w̃, z̃, respectively. Moreover, the quadruples{X,Y,
∂w, ∂z} and {X,Y, ∂w̃, ∂z̃} should both be linearly
independent and the reduced metric on the orbits of
H should be nondegenerate. These conditions assure
a compatible reduction.

Let us consider the following commuting, null
CKVs of the above family:

(10)X =w∂w + z̃∂z̃, Y = z∂z + w̃∂w̃.
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The invariant spacetime coordinates on the orbits of
the two-dimensional group of conformal transforma-
tions generated byX, Y are arbitrary functions of
the fractionsw/z̃, z/w̃. Without loss of generality we
choose them to be

(11)u= w

z̃
, v = z

w̃
.

One can show that the reduced metric on the orbits
of H generated byX,Y is conformal to two-dimen-
sional Minkowski spacetime in null coordinates, i.e.,

(12)ds2 = 2

v − u
dudv.

The invariance conditions of the potentialΦ, with
respect to the algebra generated byX,Y , are

(13)LXΦ = LYΦ = 0,

whereLX denotes the Lie derivative alongX. Under
these conditions the components of the gauge potential
one-formΦ become

Φw = 1

w
A(u,v), Φz = 1

z
B(u, v),

(14)Φw̃ = 1

w̃
Ã(u, v), Φz̃ = 1

z̃
B̃(u, v).

The reduced ASDYM equations are

(15)vA,v − uB,u + [B,A] = 0,

(16)vB̃,v − uÃ,u + [B̃, Ã] = 0,

u
(
vB̃,v + uB,u + [

B, B̃
])

(17)− v
(
uÃ,u + vA,v + [

A, Ã
]) = 0.

It is possible to choose a gauge whereA = B = 0
whereby system (15)–(17) becomes

(18)vB̃,v − uÃ,u + [
B̃, Ã

] = 0,

(19)B̃,v − Ã,u = 0.

The remaining gauge freedom is̃A → g−1Ãg and
B̃ → g−1B̃g, whereg is a constant matrix.

The invariance conditions

(20)LXΨ = LYΨ = 0

imply that Ψ depends only on the invariant coordi-
natesu,v andζ . Taking into account (14) in the gauge
whereA= B = 0, the Lax pair (7)–(8) reduces to

(21)Ψ,u = 1

u− λ
B̃Ψ, Ψ,v = 1

v − λ
ÃΨ,

where we have setλ= −ζ−1.
Eqs. (18), (19) imply that

(22)∂u
(
tr Ãk

) = ∂v
(
tr B̃k

) = 0.

wherek = 1,2, . . . ,N − 1. Hence

(23)tr Ãk =mk(v), tr B̃k = nk(u).

In the following we require an autonomous reduc-
tion, i.e., the above first integralsmk,nk are chosen
to be constant. Moreover, we restrict ourselves to the
case where the gauge group isGL(2,C) and the Higgs
fields Ã and B̃ are singular matrix functions with
eigenvalues(0,m) and(0, n), respectively, or, equiva-
lently

rank
(
Ã

) = rank
(
B̃

) = 1.

In view of these algebraic constraints,Ã, B̃ may be
written as

Ã=
(

m−RQ Q

R(m−RQ) RQ

)
,

(24)B̃ =
(

n− PS S

P(n− PS) PS

)
.

Then, an obvious consequence of Eq. (19) is the
relationQ,u = S,v which implies the existence of a
functionU(u,v) such that

Q=U,v, S =U,u.

The remaining equations that result from the substitu-
tion of (24) into (18) and (19) can easily be put in the
following form:

(25)P,v = P −R

u− v

(
m+ (P −R)U,v

)
,

(26)R,u = P −R

u− v

(
n− (P −R)U,u

)
,

(27)

U,uv = 1

u− v

(
nU,v −mU,u − 2(P −R)U,uU,v

)
.

2.3. The RPDE

We may consider the functionsP,R in system (25)–
(27) as potentials for the functionU . This considera-
tion leads to a single fourth-orderPDE as follows. First
we solve (27) for the differenceP −R to get

(28)P −R = 1

2

(
(v − u)

U,uv

U,uU,v

+ n

U,u

− m

U,v

)
.
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Substituting this expression forP − R into (25), we
obtain P,v in terms of U and its derivatives only.
Then, we differentiate (28) with respect tou and use
(26) and (28) to eliminateR,u and P − R, respec-
tively. This givesP,u in terms of derivatives ofU .
The compatibility conditionP,vu = P,uv leads to the
following fourth-order PDE forU , which was called
RPDE in [1]:

R(u, v,U ;m;n)

(29)

:= −U,uuvv +U,uuv

(
1

u− v
+ U,vv

U,v

+ U,uv

U,u

)

+U,uvv

(
1

v − u
+ U,uu

U,u

+ U,uv

U,v

)

−U,uuU,vv
U,uv

U,uU,v

+U,uu

(
n2

(u− v)2

U2
,v

U2
,u

− 1

u− v

U,uv

U,u

− U2
,uv

U2
,u

)

+U,vv

(
m2

(u− v)2

U2
,u

U2
,v

+ 1

u− v

U,uv

U,v
− U2

,uv

U2
,v

)

+ n2

2(u− v)3

U,v

U,u

(
U,u +U,v + 2(v − u)U,uv

)

− m2

2(u− v)3

U,u

U,v

(
U,u +U,v + 2(u− v)U,uv

)

+ 1

2(u− v)
U2
,uv

(
1

U,u

− 1

U,v

)
= 0.

On the other hand, we may eliminateU from system
(25)–(27). Solving the first two equations for the
derivatives ofU and substituting in (27) we getU,uv

in terms ofP,R and their derivatives. Differentiating
(25) with respect tou and (26) with respect tov and
expressing all the derivatives ofU in terms ofP,R
and their derivatives, we get the following second-
order coupled system forP andR:

(30)P,uv = 2

P −R
P,uP,v + m

v − u
P,u + n+ 1

v − u
P,v,

(31)

R,uv = 2

R − P
R,uR,v + m+ 1

u− v
R,u + n

u− v
R,v.

To decouple this system we solve Eq. (30) forR and
substitute the result into (31). This yields a fourth-
order PDE forP , namely

(32)R(u, v,P ;m;n+ 1)= 0.

In a similar way, solving Eq. (31) forP and substitut-
ing the result into (30) we get

(33)R(u, v,R;m+ 1;n)= 0.

Thus, system (25)–(27) may be regarded as an involu-
tion of the RPDER(u, v,U ;m;n) = 0. Starting with
a solutionU(u,v) of the RPDE, the system determines
two solutions of the same equation but with the para-
metersm andn shifted by 1, respectively.

This shift in the parametersm andn which connects
a triad of solutions of the RPDE may be considered as
a remnant of the lattice systems that played a crucial
role in the original derivation of the RPDE and its
Miura associates — the MPDE and the SPDE — by
Nijhoff et al. [1,5]. In that context, the parametersm
andn represent the lattice variables and, as such, they
are constrained to vary by unit steps only.

3. Auto-Bäcklund transformation

Using the Lax pair (21) one can derive an auto-
Bäcklund transformation for system (25)–(27) by
a relatively simple technique. Since the details of
this derivation [6] are not pertinent to the present
discussion, we prefer to present the result in the form
of the following

Proposition 1. The algebro-differential system

(34)Ũ,u = P − Ũ

u− λ

(
n− (

P − Ũ
)
U,u

)
,

(35)Ũ,v = R − Ũ

v − λ

(
m− (

R − Ũ
)
U,v

)
,

(36)
(
Ũ − P

)(
U − P̃

) = u− λ,

(37)
(
Ũ −R

)(
U − R̃

) = v − λ

constitutes an auto-Bäcklund transformation for sys-
tem (25)–(27).

Proof. The compatibility conditionŨ,uv = Ũ,vu of
(34), (35) leads to a second degree polynomial forŨ .
This polynomial vanishes for everỹU if and only if
P,R,U satisfy system (25)–(27).

Conversely, solving Eqs. (34), (35) with respect to
the derivatives ofU and using the algebraic relations
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(36), (37), we get the system

(38)U,u = P̃ −U

u− λ

(
n− (

P̃ −U
)
Ũ,u

)
,

(39)U,v = R̃ −U

v − λ

(
m− (

R̃ −U
)
Ũ,v

)
.

The compatibility condition holds for everyU iff
P̃ , R̃, Ũ satisfy system (25)–(27).

The algebraic relations (36), (37) are compatible
with system (25)–(27) in the following sense. Their
differential consequences lead to Eqs. (25), (26) for
P̃ , R̃. To prove this, we first express̃P, R̃ in terms of
U,P,R, Ũ :

(40)P̃ =U + u− λ

P − Ũ
, R̃ =U + v − λ

R − Ũ
.

Differentiating these equations with respect tov and
u, respectively, we get

P̃,v =U,v − u− λ

(P − Ũ)2

(
P,v − Ũ,v

)
,

(41)R̃,u =U,u − v − λ

(R − Ũ)2

(
R,u − Ũ,u

)
.

We now use Eqs. (25), (26) to eliminate the derivatives
of P,R and (38), (39) to substitute the derivatives
of U . Using (36), (37) to replaceP,R, we end up with
the equations

(42)P̃,v = P̃ − R̃

u− v

(
m+ (

P̃ − R̃
)
Ũ,v

)
,

(43)R̃,u = P̃ − R̃

u− v

(
n− (

P̃ − R̃
)
Ũ,u

)
.

These are identical to Eqs. (25), (26) withP,R,U re-
placed byP̃ , R̃, Ũ . Conversely, if our starting point
are the functionsP̃ , R̃, Ũ then the differential conse-
quences of Eqs. (36), (37) will be Eqs. (25), (26) for
P , R andU . ✷

One may now easily prove the following per-
mutability theorem. It is worth noting that the super-
position principle is very simple and remarkably sim-
ilar to the one connecting four solutions of the KdV
equation.

Permutability theorem. Let (Ui,Pi,Ri), i = 1,2, be
a solution of system (25)–(27), generated by means
of the Bäcklund of transformation (34)–(37) from a

Fig. 1. Bianchi commuting diagram.

known solution (U0,P0,R0) via the Bäcklund para-
meters λ1 and λ2, respectively. Then there exists a new
solution (U3,P3,R3) which is given by

(44)(U3 −U0)(U2 −U1)= λ2 − λ1,

(45)(P3 − P0)(P2 − P1)= λ2 − λ1,

(46)(R3 −R0)(R2 −R1)= λ2 − λ1,

where (U3,P3,R3) is constructed according to Fig. 1.

The auto-Bäcklund transformation (34)–(37) pro-
duces an auto-Bäcklund of the RPDE in the follow-
ing fashion. Beginning with a solution of the RPDE
R(u, v,U ;m;n)= 0, we may calculate the functions
P,R using system (25)–(27). Then, the integration of
the Riccati system (34), (35) yields a new solutionŨ

of the same equation.

4. Symmetry analysis and group invariant
solutions of the RPDE

In [1] it was shown that the RPDE is related to the
KdV hierarchy. In a subsequent paper [6] we shall
show that the solution space of the Ernst–Weyl equa-
tions describing the collision of two neutrino waves
accompanied by gravitational waves is embedded in
the solution space of the RPDE. Hence, it is interesting
to consider specific solutions of the RPDE. Of partic-
ular interest are the so-called group invariant solutions
[7–9]. In this section we first calculate the symmetry
algebra of the RPDE. Then, the group invariant solu-
tions, for each of the one-dimensional subgroups in the
optimal system, are explicitly constructed.
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4.1. Lie point symmetries

An infinitesimal symmetry of the RPDE is repre-
sented by the vector field

(47)
v = ξ(u, v,U)∂u + ζ(u, v,U)∂v + φ(u, v,U)∂U .

Using the fourth-order prolongation ofv [7,8] and
taking into account the RPDE itself, we get a linear
overdetermined system of PDE’s forξ , ζ and φ.
The determining equations form a very large system,
which was obtained using SPDEfor REDUCE[10] and
MATHLIE for MATHEMATICA [11]. The six simplest
equations of this system are

(48)ξ,v = ξ,U = ζ,u = ζ,U = φ,u = φ,v = 0,

and these reduce the rest of the determining equations
to the following simple system:

(49)(u− v)ξ,u + ζ − ξ = 0,

(50)(u− v)ζ,v + ζ − ξ = 0,

(51)φ,UUU = 0.

The general solution of this system is given by

ξ(u)= αu+ β, ζ(v) = αv + β,

(52)φ(U)= γ1 + γ2U + γ3U
2.

Therefore, the symmetry algebrag of the RPDE is
five-dimensional, spanned by the following vector
fields:

v1 = ∂u + ∂v, v2 = u∂u + v∂v,

(53)v3 = ∂U, v4 =U∂U , v5 =U2∂U .

The generators{v1,v2} form a two-dimensional non-
Abelian solvable Lie algebrah. The subalgebra span-
ned by{v3,v4,v5} is isomorphic tosl(2). Thus,

(54)g = h ⊕ sl(2).

The group generated byv1,v2 consists of base trans-
formations, i.e., transformations that leave the depen-
dent variable unaffected,

(55)(u, v,U)→ (αu+ β,αv + β,U), α,β ∈ R.

In contrast, the remaining vector fields generate the
projective groupPSL(2,C) acting only onU (Möbius

transformation):

(u, v,U)→
(
u,v,

αU + β

γU + δ

)
,

(56)A=
(
α β

γ δ

)
∈ SL(2,C).

One can now classify the subalgebras of the symme-
try algebrag very easily. Sinceg is the direct sum of
h andsl(2), the problem reduces to the classification
of the subalgebras of these two algebras. The optimal
system [7, p. 203] of one-dimensional subalgebras ofh

is two-dimensional and is generated byv1 andv2. The
corresponding optimal system ofsl(2) is two-dimen-
sional and is generated by the vector fieldsv3 andv4.
Thus, the optimal system of one-dimensional subalge-
bras of the RPDE is spanned by

v1, v1 +µv3, v1 +µv4,

(57)v2, v2 +µv3, v2 +µv4, µ �= 0.

4.2. Reductions to the Schwarzian equation

The group invariant solutions under the vector fields
v1,v2 are solutions of the RPDE of the form

(58)U(u,v)= F(u− v), U(u, v)= F

(
u

v

)
,

respectively. Inserting these into the RPDE and inte-
grating once the reduced ODE, for each case, results
in the Schwarzian equation

(59){F,y} = F,yyy

F,y
− 3

2

F 2
,yy

F 2
,y

=G(y),

where

(60)

G(y)=




κ
y2 , y = u− v, for v1,

n2

2(y−1)2
+ m2

2y2(y−1)2
− 1

2y2 + κ
2y(y−1)2

,

y = u/v, for v2,

andκ a constant of integration. The general solution
of (59) has the formF = ϕ(y)/ψ(y), whereϕ(y) and
ψ(y) are two arbitrary, linearly independent solutions
of the linear Schrödinger equationψ,yy + (1/2)×
G(y)ψ = 0 [8,12].
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4.3. Reduction to Painlevé III

The invariant solutions of the RPDE under the
vector fieldv1 +µv3 satisfy the differential constraint

(61)µ−U,u −U,v = 0.

Thus,U(u,v) is of the form

(62)U(u,v)= F(u− v)+ 1

2
µ(u+ v).

Substituting this form into the RPDE, we get a fourth-
order ODE forF(y), wherey = u − v. The order of
this ODE may be reduced by two on setting

(63)F ′(y)= µ

2

1+G(y)

1−G(y)

and integrating once. The reduced second-order ODE
for G(y) is Painlevé V withδ = 0 (compare with
Eq. (70) below), i.e.,

G′′ =
(

1

2G
+ 1

G− 1

)
G′2 − 1

y
G′ + n2

2

G(G− 1)2

y2

(64)− m2

2

(G− 1)2

y2G
+ κ

G

y
,

whereκ is the constant of integration. In this case,
Painlevé V reduces to Painlevé III [13] in full form,1

v′′(z)= v′(z)2

v(z)
− v′(z)

z
+ α̃v(z)2 + β̃

z

(65)+ v(z)3 + κ2

v(z)
,

through the transformation

(66)z2 = 2y, u(z)= 1+G(z)

1−G(z)
,

(67)u(z)= v′(z)
v(z)2

− β̃ + κ

κzv(z)
+ κ

v(z)2
,

(68)
(
1− u(z)2

)
v(z)= u′(z)+

(
2+ β̃

κ

)
u(z)

z
− α̃

z
.

The parameters̃α, β̃ are related to the parametersα,β
of the Painlevé V through

2α = n2 = ((α̃ + 2)κ + β̃)2

16κ2 ,

1 Using a scaling transformation one may always set one of the
parameters of the Painlevé III equal to 1.

(69)−2β =m2 = (β̃ − (α̃ − 2)κ)2

16κ2 .

4.4. Reduction to Painlevé V

The group invariant solutions of the RPDE for the
vector fieldv1 + µv4 are related to Painlevé V in full
form, i.e., to the ODE

G′′ =
(

1

2G
+ 1

G− 1

)
G′2 − 1

y
G′ + α

G(G− 1)2

y2

(70)+ β
(G− 1)2

y2G
+ γ

G

y
+ δ

G(G+ 1)

G− 1
.

The invariant solution under this generator satisfies the
PDE

(71)µU −U,u −U,v = 0,

which has the general solution

(72)U(u,v)= F(u− v)exp

(
1

2
µ(u+ v)

)
.

The RPDE becomes now a fourth-order ODE which,
after the substitution

(73)F ′(y)= µ

2

1+G(y)

1−G(y)
F (y), y = u− v,

can be integrated once leading to the full Painlevé V
(70) with parameters

(74)

α = n2

2
, β = −m2

2
, γ = κ, δ = −µ2

2
,

whereκ is the constant of integration.

4.5. Reductions to Painlevé VI

The remaining generators of the optimal system
lead to reductions related to Painlevé VI. The proce-
dure is the same as in the previous cases. First, we in-
tegrate the first-order differential constraint leading to
a specific form for the functionU(u,v), in terms of
an unknown functionF which depends ony = u/v.
The substitution into the RPDE leads to a fourth-
order ODE which, after an appropriate substitution for
the first derivative ofF , is integrated once leading to
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Table 1

Symmetry generator and Substitution and quadrature Parameters in PVI for G(y)
differential constraint

v2 +µv3, U(u,v)= F(y)+ µ
2 log(uv), α = n2

2 , β = −m2

2 ,

µ− uU,u − vU,v = 0 F ′(y)= µ
2y

y+G(y)
y−G(y)

γ = 1
2(m

2 + n2 + κ), δ = 1
2

v2 +µv4, U(u,v)= F(y)(uv)µ/2, α = n2

2 , β = −m2

2 ,

µU − uU,u − vU,v = 0 F ′(y)= µ
2y

y+G(y)
y−G(y)

F (y) γ = 1
2(m

2 + n2 +µ2 + κ), δ = 1−µ2

2

Painlevé VI,

G′′ = 1

2

(
1

G
+ 1

G− 1
+ 1

G− y

)
G′2

−
(

1

y
+ 1

y − 1
+ 1

G− y

)
G′

+ G(G− 1)(G− y)

y2(y − 1)2

(75)

×
(
α + β

y

G2 + γ
y − 1

(G− 1)2
+ δ

y(y − 1)

(G− y)2

)
.

The results are listed in Table 1.
The first case, where full Painlevé VI occurred as a

reduction of an integrable scalar PDE, was presented
in [1]. It resulted from the reduction of the SPDE and,
since the latter is related to the RPDE through a chain
of Miura maps [1], the reduction of the RPDE itself to
Painlevé VI, as presented above, was a well expected
result.

5. Perspectives

It is well known that reductions of the ASDYM
equations lead to physically interesting integrable
equations by imposing appropriate reality conditions.
In this Letter we have restricted to a real slice with-
out imposing any further conditions on the, generally,
complex dependent variables of system (25)–(27). In
a subsequent paper [6] we shall show that the Ernst–
Weyl equation, describing the collision of neutrino
waves accompanied by gravitational waves [14], arises
naturally within this framework. From this standpoint,
it is justified to view the RPDE as a generalization of

the Ernst–Weyl equation. The latter contains the fa-
mous Ernst equation when the neutrino fields vanish
everywhere. Our reduction scheme unifies many as-
pects of the integrability of the Ernst equation like
the Hauser–Ernst Lax pair, Neugebauer–Kramer invo-
lution and the Harrison Bäcklund transformation and
gives analogous generalizations for the Ernst–Weyl
equation.

With regard to the above mentioned relation be-
tween the RPDE and the Ernst–Weyl equation, we
would like to point out that the results of the last sec-
tion link up with the recent work of Schief [15], who
demonstrated that the Ernst–Weyl equation for axially
symmetric spacetimes reduces to the full Painlevé III,
V and VI. The relevant advantage of our approach
is that it enables one to produce such reductions in
a straightforward manner from those of the RPDE,
namely by restricting the solution space of the latter.

In this Letter we restricted our considerations to the
first member of the Miura chain of PDEs consisting
of the RPDE, the MPDE and the SPDE. It remains
to be seen if the other two members of the chain can
also be obtained by a two-dimensional reduction of
the ASDYM equations, analogous to the one that led
to the RPDE. The derivation of the Lie point symme-
tries of the MPDE and the SPDE and the construction
of similarity solutions in the manner presented above
for the RPDE are equally interesting projects. In this
respect, it is of particular interest to consider the re-
lation between the Miura transformations connecting
the RPDE with the MPDE and the SPDE [1], on the
one hand, and analogous transformations connecting
the ODEs obtained by similarity reduction of the cor-
responding PDES, on the other. The results of Nijhoff
et al. [5] on the Miura chain connecting the (regular)
Painlevé VI with its modified and Schwarzian coun-
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terparts are expected to play a significant role in clari-
fying this issue.
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